	
[image: image4]
	OpenNMS porting strategy document
	[image: image5.png]f o [o~ =

	
[image: image2]
	OpenNMS porting strategy document
	[image: image3.png]f o [o~ =

OpenNMS - Porting Strategy Document
Version No: 1.0
Date: 17-Aug-2006
Project Name: NG-EMS
Project Code: C/060453

[image: image6.jpg]/‘)7’
7" Powerwave’

technologies

No 74, South Phase,

Ambattur Industrial Estate, Ambattur,

Chennai – 600 058.

Copyright Notice

Confidential / Copyright © Powerwave Technologies, Inc. 2006. All rights reserved
Revision History

	Version No
	Date
	Prepared by / Modified by
	Significant Changes

	1.0
	17-Aug-2007
	HCL Technologies
	Initial Draft

Table of Contents
51
Introduction

51.1
Purpose

51.2
Scope

51.3
Intended audience

51.4
Product overview

51.5
Porting Classification / Type

61.6
Porting Requirements

62
Existing System Analysis

62.1
Analysis of the Existing System

62.1.1
Network Discovery

62.1.2
Network Monitoring

72.1.3
Network Data Collection

72.1.4
Event Management

72.1.5
Notification

72.2
Environment Set-up

83
Porting Strategy

83.1
Porting Methodologies

93.1.1
Differences between the existing system and target system

93.1.2
List of Work Products & Modules to be converted

93.1.3
Tools Requirement for Conversion

93.1.4
Conversion & Testing Environment

93.1.5
Conversion Execution Sequence and Timing

103.2
Porting Assumptions and Constraints

103.3
Existing to Target Platform Conversion issues

103.3.1
Building OpenNMS

103.3.2
OpenNMS Database install

113.3.3
Dependency on JNI Code

1 Introduction

1.1 Purpose

OpenNMS is an open-source enterprise network management framework, primarily developed to work on Linux based platforms. This document highlights the porting strategy to build and install OpenNMS on Windows platform.
1.2 Scope

This document describes in detail the procedure involved in porting OpenNMS application from Linux to Windows platform. It covers details on the items to be ported, challenges involved in it and the mitigation procedure.
1.3 Intended audience

This document is intended for those who wish to understand the tasks involved in making OpenNMS to work on Windows platform.
1.4 Product overview

OpenNMS is an enterprise network management platform developed under the open source model. It helps network administrators to monitor critical services on remote machines and collects the information of remote nodes. As a network management platform, it provides the following functions:

1. Discovery - Gathering information about the devices on a network and adding them to the database

2. Monitoring – Keeping track of status of the managed elements

3. Events – Receiving traps, correlation and sending notifications

4. Data collection – Collection, storage, and reporting of various network data
1.5 Porting Classification / Type
The conversion involves porting OpenNMS from Linux based environment to Windows platform.
1.6 Porting Requirements

The NetWayManager product which provides element management functions to manage network elements is built on top of OpenNMS. The currently released version, NWM 3.0 is deployable on Linux environment only. The next version planned for release, NWM 3.1 has to be deployed on both Windows and Linux platforms. This requires OpenNMS to be ported to Windows platform.
2 Existing System Analysis

2.1 Analysis of the Existing System

OpenNMS is a enterprise grade Network Management System which is written in Java. It is currently distributed via Redhat and Mandrake Linux packages. Configuration data is stored in eXtensible Markup Language (XML) files, and system information is stored in a Postgres database.
OpenNMS can be built and installed using build.sh shell script. To start, stop or to know the status of services Opennms.sh script can be used.
2.1.1 Network Discovery

After the system is started, the discovery process will send ICMP "pings" to every address configured for discovery. If a device responds, discovery will generate a "suspect node" event. It is also possible to generate these events manually, or through a script, which allows for the discovery process to be by-passed automatically. By default, 24 hours after the discovery process has run, it will repeat in order to determine if new devices are on the network. ICMP pings are performed by the JNI code available as shared library file. Nodes to be discovered can also be configured in discovery-configuration.xml.
The capabilities daemon, capsd, listens for "suspect node" events. When one is received, it tests each of the configured services (such as SNMP, HTTP, etc.) against the new node, and adds the discovered services to the database. The services it discovers, and how those services are treated, are completely configurable via the capsd XML configuration file. By default, the process is repeated 24 hours after completion of the last scan
2.1.2 Network Monitoring

The Poller sub-system is used to monitor all discovered services. During a "poll", a test is run to determine if the monitored service is "available". If not, an outage event is generated. When an outage is detected, the system can be configured for adaptive polling. By default, the poller will check, say, HTTP on a node every five minutes. If the HTTP service is "down" (usually the result of multiple failed attempts to reach the service over a short period of time), a Node Lost Service event will be generated, and the poller will increase the frequency of polls from five minutes to 30 seconds. If after five minutes the service is still down, the poller will resume normal five minute polls. If after 12 hours the service is still down, the polling rate is further reduced to once every ten minutes. If an outage lasts five days or more, the service is removed from the node. All of these parameters are configurable.

2.1.3 Network Data Collection

For any device that supports SNMP, data specific to that device can be collected and presented in reports. The data can be at the device level (CPU Utilization, Free Memory, etc.) or at the interface level (Traffic In/Out, Errors, etc.). Non-IP interfaces can be polled as long as the SNMP agent on the device can be reached via at least one IP address. Collections can be configured differently per device type as well as per different device levels (for example, "gold" level servers could be polled once a minute whereas "silver" level servers are polled once every five minutes). Events can be generated when the collected data exceeds a certain threshold. For this data collection RRDtool is used and it also uses JNI code as jrrd.so
2.1.4 Event Management

The OpenNMS event management system is able to display the events currently in the database via the web-based End User Interface (EUI). Events can be generated internally, such as when there is a service outage or if a data collection threshold is exceeded, or externally, either via a command or SNMP trap. Automatic actions can be taken based upon the type of the event and the information passed with it.

2.1.5 Notification

For every event in the system, a notification can be sent. Events used in notifications can be filtered based upon source and service. Notifications are messages that are sent to a "notification path". These can be sent to individuals or groups (or a combination of the two), and includes the ability to escalate the notification should it go un-acknowledged for a given amount of time.

2.2 Environment Set-up

1. Redhat Linux v 9.0, Fedora 6, RHEL 5
2. Java (Jdk1.5)

3. Postgres 8.0
4. RRDtool

5. Tomcat 4.0
3 Porting Strategy
3.1 Porting Methodologies

OpenNMS is written in Java. It uses scripts to build the application which are Linux dependent. Hence porting of those scripts to batch script is needed for the OpenNMS to support windows platform.

Also OpenNMS uses JNI in its modules. JNI code in Linux refers to shared library file with .so extension. These dependencies can be eliminated by either converting shared library used by JNI to windows compatible format or converting JNI calls into Java API calls.
OpenNMS to support Windows requires following modification
1. Building from source
· The script file used to compile and install OpenNMS expects Linux to be the OS of the installed system and hence it has to be modified to accept Windows also

· It uses C compiler to compile .c files and generate .so files. This has to be removed since windows platform does not recognize .so files.
· The file path mentioned in build script is Linux dependent and hence it has to be modified to Windows compatible format.

· Other helper script files are available for installing OpenNMS Database in Linux (install.sh, runjava.sh) and those script files have to be ported to batch files.
2. Installing Postgres

· Postgres 8.2 have to be installed with PL/Java language to eliminate the use of Linux dependent C class in executing a stored procedure. This C file will be converted to Java class and having PL/Java module installed with Postgres, stored procedure can be written to use that Java class.
· OpenNMS installer java class is available to install the database. It has to be modified to install the stored procedure that uses java class instead of using C class.
 3. Modifying source to eliminate JNI dependency

 There are two places where OpenNMS uses JNI code.
· Discovery will send ICMP ping to find the nodes that are operationally up. This is achieved in OpenNMS using JNI that uses jicmp.so. This JNI code dependency can be removed by using Jdk1.5 and above that provides API for ICMP ping.
· RRD tool is used by the data collection daemon and it uses jrrd.so file to collect data. This can be eliminated by modifying rrd-configuration.xml.
3.1.1 Differences between the existing system and target system

 The existing system can work only with Linux. The target system will be compatible on Windows XP and Windows 2003 server
3.1.2 List of Work Products & Modules to be converted
1. Script files that are used to build and install OpenNMS
2. Discovery module that uses JNI for ICMP ping.

3. Data collection module that uses JNI code for generating performance graph of data collected on nodes.

4. Stored procedure that uses Linux dependent c file

5. OpenNMS Installer.

3.1.3 Tools Requirement for Conversion
1. Java (JDK1.5 or above)
2. Postgres 8.2 with PL/Java module.

3. Apache Ant 1.6

4. JRobin jar
3.1.4 Conversion & Testing Environment

1. Windows XP, Windows 2003 Server
2. Java (Jdk1.5)

3. Postgres 8.2 with PL/Java

4. JRobin 1.4.0 jar
5. Tomcat 4.0 , 5.0
3.1.5 Conversion Execution Sequence and Timing

1. Porting of Script files for building OpenNMS
a. Converting build.sh to build.bat
b. build.xml involves following changes

1. Adding a condition to support Windows OS

2. Modifying file path that are Linux dependent.
3. Eliminating JNI code compile targets

c. Converting Opennms.sh to Opennms.bat
2. Porting of OpenNMS database function to use PL.Java language
a. Install Postgres with PL/Java (Procedural Language for Java)
b. Convert iplike.c to iplike.java.and create a target in build.xml to create iplike.jar that
 has the iplike.class file.
c. Convert Installer java class to create the stored procedure using iplike java class
3. Conversion of JNI dependent code

a. Remove the rrd JNI code dependency, by modifying the rrd-configuration.xml file
 to set use of JNI code to false. Setting this property uses JRobin jar file to collect
 performance data.

b. Remove the ICMP JNI code dependency by using Java API available in JDK 1.5
 for ICMP ping.
3.2 Porting Assumptions and Constraints

It is assumed that the server in which OpenNMS is installed, has SNMP agent running as its service.
3.3 Existing to Target Platform Conversion issues
3.3.1 Building OpenNMS

· OpenNMS build file has platform check targets which will not allow build to continue if
 platform is other than Linux. Additional target has been added for allowing build to
 continue in Windows.

· Build file has Linux C compiler targets.for generating C library files. These targets
 have been skipped for Windows and C library files are replaced with Java Archives.

3.3.2 OpenNMS Database install

· Install script for OpenNMS creates a stored procedure that uses C Language in
 Postgres database server. This has been modified to use Java language in the stored
 procedure having PL/Java module installed in Postgres Database server.

3.3.3 Dependency on JNI Code
· ICMP ping in discovery daemon of OpenNMS uses JNI code to access icmpsocket
 shared library. This JNI Code has been replaced by Java API (JDK1.5).
· OpenNMS uses rrdtool shared libraries for generating performance graph. This has
 been removed by using JRobin Java Archive.

	
	HCL, Powerwave Confidential
	Page 0 of 10

[image: image1.png]f o [o~ =

[image: image2][image: image3.png][image: image4][image: image5.png]_1190175934

